Mumford–Shah and Potts Regularization for Manifold-Valued Data
نویسندگان
چکیده
منابع مشابه
Total Variation Regularization for Manifold-Valued Data
We consider total variation (TV) minimization for manifold-valued data. We propose a cyclic proximal point algorithm and a parallel proximal point algorithm to minimize TV functionals with -type data terms in the manifold case. These algorithms are based on iterative geodesic averaging which makes them easily applicable to a large class of data manifolds. As an application, we consider denoisin...
متن کاملVector-valued Manifold Regularization
We consider the general problem of learning an unknown functional dependency, f : X !→ Y, between a structured input space X and a structured output space Y, from labeled and unlabeled examples. We formulate this problem in terms of data-dependent regularization in Vector-valued Reproducing Kernel Hilbert Spaces (Micchelli & Pontil, 2005) which elegantly extend familiar scalarvalued kernel meth...
متن کاملMultiscale Representations for Manifold-Valued Data
We describe multiscale representations for data observed on equispaced grids and taking values in manifolds such as the sphere S2, the special orthogonal group SO(3), the positive definite matrices SPD(n), and the Grassmann manifolds G(n, k). The representations are based on the deployment of Deslauriers–Dubuc and average-interpolating pyramids “in the tangent plane” of such manifolds, using th...
متن کاملA Graph Framework for Manifold-Valued Data
Recently, there has been a strong ambition to translate models and algorithms from traditional image processing to non-Euclidean domains, e.g., to manifold-valued data. While the task of denoising has been extensively studied in the last years, there was rarely an attempt to perform image inpainting on manifold-valued data. In this paper we present a nonlocal inpainting method for manifold-valu...
متن کاملInterpolatory Wavelets for Manifold-valued Data
Geometric wavelet-like transforms for univariate and multivariate manifold-valued data can be constructed by means of nonlinear stationary subdivision rules which are intrinsic to the geometry under consideration. We show that in an appropriate vector bundle setting for a general class of interpolatory wavelet transforms, which applies to Riemannian geometry, Lie groups and other geometries, Hö...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Imaging and Vision
سال: 2016
ISSN: 0924-9907,1573-7683
DOI: 10.1007/s10851-015-0628-2